
1

The Lexos Experience and the Future of Accessible Text
Analysis Tools

Introduction
Lexos is a web-based text analysis tool which offers an integrated workflow for users to
perform pre-processing of textual data, along with an array of methods of analysis and
visualisation tools, primarily focused on studying the similarity and distinctiveness of
single-token vectors. Lexos offers an interface designed to be used by novices, with
plenty of built-in help documentation. It is ideal for classroom use but powerful enough
to be used for scholarly research. The tool is written in Python and JavaScript, and the
open-source code is available on GitHub and can be downloaded and installed locally.
However, the online instance hosted by Wheaton College, in Massachusetts is used
widely for teaching, especially in introductory DH classes.

Lexos got its start in 2008 as a curricular experiment at Wheaton. With a bit of seed
funding from the National Endowment for the Humanities, Professors Mark LeBlanc, a
computer scientist, Michael Drout, a specialist in medieval English literature, and Mike
Kahn, a statistician, were brought together to design an interdisciplinary course that
brought their various areas of interest into dialogue. With undergraduate participation,
they began to explore techniques for computational literary analysis, which they
dubbed ‘Lexomics’, focussing initially on the use of hierarchical cluster analysis for the
study of Old English literature. The team employed PERL scripts that performed pre-
processing on the corpus assembled by the Dictionary of Old English and called
clustering routines in R to produce dendrograms showing textual similarity. I became
involved in the project in 2011 by developing a web-based interface for the project’s
scripts, and I have had a lead role in the project ever since. Between 2011 and 2017,
Lexos was funded by two further grants from the NEH.

Development was also supported by Wheaton’s summer research fellowships, which
brought teams of undergraduate English and Computer Science majors together in a lab
each summer until the beginning of the pandemic. The English students would use
Lexos to engage in new research whilst the Computer Science majors would develop
the web application in response to the needs of the student and faculty research
agenda. As time went on, the complexity of Lexos required its developers to pay more
and more attention to developing a robust and sustainable coding infrastructure that
followed standards and exemplified best practices in software development. Lexos is
now in version 4.0 and has changed considerably over the years in response to changing
technologies and the expertise of Wheaton’s undergraduate developers. This unique

http://lexos.wheatoncollege.edu/
https://github.com/WheatonCS/Lexos

2

model has been an undeniable benefit to its student participants, who have authored
publications and gained valuable experience in software engineering. I will discuss
other implications of the model for the development of Lexos below.

As Lexos has evolved, we have tried to remain faithful to certain fundamental principles.
Lexos was designed to lower the barrier to entry to computational text analysis. It is
ideal both for use as a teaching tool (suitable for the undergraduate classroom) and as a
research tool for any researcher who might lack coding expertise. The interface is
designed to overcome the opacity of computational methods by integrating help
features that open up the algorithmic ‘black box’ – although the precise means of
achieving this goal have changed over the years. We have also made it a priority to
include features that help students and scholars working with pre-modern or under-
resourced languages overcome the types of problems we encountered in studying Old
English in the early days of the project. This means that we have put considerable effort
into developing Lexos’ pre-processing tools to allow users to perform rich
manipulations to make their data tractable for computational analysis.

Lexos is used widely in introductory Digital Humanities courses, although we have had a
difficult time collecting data about its user base. Lexos has obvious similarities to
Voyant Tools, particularly in having an accessible web-based interface. It also
resembles Stylo in R in that it heavily emphasises hierarchical cluster analysis (the
method originally investigated by the Lexomics group). In technical terms, it differs from
both in employing Python and its available statistical libraries on the back end. Readers
are encouraged to try it out to get a sense of the range of features offered in Lexos. Test
data and guidance are available in the Experiments folder in the Lexos GitHub repo.
However, the short overview should suffice as context for my discussion of how Lexos
can continue to support users and how it can evolve in the changing Digital Humanities
landscape.

Overview of Features
Users typically upload their data as plain text files, although users can also supply .docx
files, tagged HTML and XML files, and URLs. In all cases, the materials are downloaded
to the server (or a local session directory for local installations) and coerced into UTF-8
encoding. Once files are downloaded, users can use the Manage tool to activate and
de-activate documents in their corpus. Inactive documents are ignored by the other
Lexos tools but can be made active at any time. Although Lexos should be able to
handle large numbers of files, its UI is not designed for ingesting or managing the large
datasets that are increasingly available to and used by members of the DH community.
We conceive of Lexos as best suited to small to medium-sized datasets.

https://voyant-tools.org/
https://github.com/computationalstylistics/stylo
https://github.com/WheatonCS/Lexos/tree/master/test/test_suite/Experiments

3

The usual first step is to perform pre-processing functions, known in Lexos parlance as
‘scrubbing’. The Scrub tool (AKA ‘Scrubber’) allows the user to select common
functions such as removing digits, punctuation, or stop words, consolidating string
patterns (important for languages with multiple equivalent spellings), stripping markup
tags, and decoding entities in various markup languages. A variety of special character
entities commonly used in the markup of early European languages are available out of
the box, but entity sets can be uploaded or entered manually.

Screenshot of the Lexos Scrubber Tool

Users can also use the Cut tool (AKA ‘Cutter’) to split their documents into segments
based on word or character length, as well as on structural markers like chapter
divisions. They can also use the Tokenize tool to generate a table of document-term
counts or frequencies, which can be culled to include the most or least frequent terms.
All these tools allow the user to preview the results without modifying the original
documents, and the results can be downloaded. In some cases, the user’s only goal
may be to obtain a table of token counts.

One important caveat is that these tools operate by matching character patterns to
obtain countable tokens. Whilst it is often possible to approximate a ‘word’ token by
removing punctuation and splitting the remaining text on whitespace, this does not
work in all languages. Lexos provides some tools for the user to manipulate texts in
languages like Chinese, which do not divide words with spaces, to obtain meaningful
results. However, Lexos does not employ any pre-existing knowledge of the document’s
language. This is a subject I will return to below.

Once users have prepared their documents to their satisfaction, they can proceed to a
number of analysis and visualisation tools. Wordcloud, Multicloud, and BubbleViz are
all tools users can employ to visualise the document-term matrix in slightly different
ways. The most distinctive tool is Rolling Window, which enables the user to plot a line

4

graph showing the average frequency of pattern (or ratio between two patterns) in a
sliding window of text of a desired size.

Screenshot of the Lexos Rolling Window tool

Lexos is primarily used for its Dendrogram tool, which performs hierarchical cluster
analysis. The interface allows the user to switch between common distance metrics
and linkage methods, as well as to tokenise the data in the various ways performed by
the Tokenize tool. The Help sidebar provides guidance on how to choose amongst the
various options.

Screenshot Lexos of the Lexos Dendrogram tool with the Help sidebar open

For comparison, users can also use the K-Means tool to perform k-means clustering,
the Similarity Query tool to calculate cosine similarity between documents and a host
of metrics for assessing the distinctiveness of terms and documents within the corpus.

5

The web browser will usually remember a user’s session if they leave the site, although
sessions are periodically deleted on the hosted version. However, users can download a
zip file of their workspace and then upload it to resume work where they left off.

Challenges to Further Development
Lexos has many challenges if it is going to be a viable tool for DH teaching and research
in the future. This is the depressing section of my discussion, so I want to address these
challenges now before turning to the more optimistic subject of what Lexos and other
text analysis tools might look like if they are positioned to serve DH users in the future.

Sustainability

One of the primary challenges is the institutional environment in which Lexos has
developed. At its inception and for many years, we benefitted from a rich supply of
talented developers in the Wheaton undergraduate student body. However, since the
pandemic, Wheaton’s funding has begun to dry up, making it difficult to recruit students
who do not require a considerable amount of training. As the code base has grown, so
has the amount of training required. Furthermore, Mark LeBlanc, the Wheaton
computer scientist who has taken the lead in these efforts, is nearing retirement and
has begun scaling back his commitment to the project. I have taken the lead on the
future development of Lexos; however, as a professor at a non-selective state-funded
institution with a heavy teaching load, I have little institutional support for my labour
and cannot draw on the same student talent pool for the types of activities that have
spurred development previously. At present, I am not even sure that I will be able to
provide an institutional host for the public instance of Lexos once Professor LeBlanc
retires. Managing the infrastructure and a continuous flow of student developers – not
to mention the ‘marketing’ that is required for a tool to gain traction within the DH
community – is no mean feat even at more well-resourced institutions, but this
represents a particular challenge for Lexos.

That so many students had the opportunity to take important roles in software
development was a huge selling point at the beginning of the project but it has also had
some unfortunate effects. For instance, in 2020 the students made extensive changes
to both the back-end architecture and front-end interface. There was a rush to
complete the rewrite so that graduating seniors could put a line on their CVs. As a
result, certain features available in the previous release were not implemented in the
new version, and a degree of usability was lost in the new design. Professor LeBlanc and
I found ourselves no longer familiar with the code base, which has hampered further
development. Although we continue to make tweaks, and Lexos 4.0 is running on the
public server, we have not yet made it an official release.

6

Changing Landscape

A related challenge that concerns this panel is how the needs of our audience change
as the DH landscape evolves. For some time, the various strands of computational text
analysis (stylometry, computational literary studies, cultural analytics, distant reading)
have been increasingly moving beyond (single) vectors of word counts towards more
complex word embeddings, NLP pipelines, and even LLMs. These changes present
designers of existing tools like Lexos with several questions. Is there value in
maintaining an older tool offering older techniques? If so, can new techniques be
implemented within the existing technical structure? Can they be implemented within
the existing user interface?

These are big questions to which I will provide only brief answers deriving from the Lexos
experience. Many new techniques require large datasets which simply aren’t available
for some humanities subject matters. There thus remains a need for tools that
specialise in the analysis of smaller datasets. Similarly, tools which build in solutions
for particular problems like non-standardised spelling or provide clear documentation
about how particular algorithms work are vital to making computational text analysis
accessible to a wider audience that may lack the technical expertise or the time to
design their own solutions. Until recently, a well-designed user interface that you could
access on the web or launch with a double click was valuable to this audience.
Notebook coding environments have begun to erode the advantage of such interfaces
by combining text-based explanations with implementable code. Increasingly, I am
seeing dashboard-like mini-apps being produced using tools like the Python Streamlit
library which allow users to perform specific manipulations of data. The next stage of
evolution is likely to be the AI-generated interface, produced quickly and for a similar
limited purpose. (I will consider the prospect of generative AI chatbots as interfaces
below.) For now, I will simply say that we may have to reconceive what constitutes an
‘interface’ for a text analysis tool in the future. In the next section, I will describe the
direction I have taken Lexos in.

Re-Inventing Lexos
Two years ago, I attempted to restore some of the features that were lost after the
Summer of 2020, but I found the code difficult to understand and concluded that it was
likely to be impossible for future developers to create new features without a
substantial learning curve. As a result, I decided to re-implement all the features as a
separate Python library that would be documented obsessively using modern
documentation tools. I hope that making Lexos functions independent of the web app
will make it easier to develop new features without the overhead of designing a front end
around them. Eventually, the front end that calls the Python code via simple API
requests should be considerably simpler to maintain, and, in the case of Lexos, adapt

https://streamlit.io/

7

to changes in web technologies. The pre-release of the lexos Python library is now
available on GitHub, although I emphasise that it is very much not ready for primetime.

Besides making a more efficient and sustainable developer experience, I began to re-
imagine the architecture of Lexos by fundamentally changing its basic units of analysis.
The web app currently stores document files as plain text strings, which it divides into
tokens based on regular expression patterns, normally splitting on whitespace. Lexos
leaves it up to the user to tweak the default tokenisation as necessary to approximate
the language or other requirements of their source material. The new lexos library
instead uses existing language models available in the latest NLP technologies to
implement tokenisation. The token as a unit is no longer a simple string; it contains a set
of annotations or ‘attributes’ which provide further information about its semantic
content, including features such as lemma, part of speech, morphological form, named
entity type, or other bespoke information. Users can now access this information to
interrogate a more diverse range of features beyond the simple frequency of word
vectors (where ‘word’ really means a type of character string). This helps to address one
of the major criticisms of early word vector-based analysis, which is that it was largely
context-independent. By enabling users to access some of the latest NLP technologies,
it also expands the number and type of research questions that can be investigated
based on the annotations generated using language models.

Without getting into the technical weeds, I will say that the vehicle for this
transformation is the Python NLP library spaCy, which is fairly well-known in the DH
community. The lexos library encourages users to convert their texts to spaCy Doc
objects as soon as possible and then uses spaCy’s built-in methods to perform
tokenisation and access token attributes. The advantage is that spaCy has an ever-
growing set of language models which allows the Lexos user to generate token
attributes appropriate to the language of their texts. (Lexos uses a default model if no
spaCy or spaCy-compatible model is available.)

These choices come with consequences. One is that work on the user interface, which
has been so vital to making Lexos accessible, is for the moment on hold. At the same
time, the existence of a well-documented Python library (which can be installed with
pip install lexos command) makes it possible for users with a little coding
knowledge to implement the features of Lexos fairly easily. In this sense, it moves Lexos
in the same direction as Spyral, which allows users to deploy Voyant Tools in a
notebook-like environment. This direction arguably shifts the audience for Lexos away
from the introductory DH student or the non-coding Humanities scholar towards users
with a pre-existing degree of technical knowledge. Part of me recoils at this
development, as I still think that the menus, check boxes, and other settings of the web -
based user interface are important for reaching these audiences. Another part of me
shies away from being drawn into the old debate about where digital humanists, or

https://scottkleinman.github.io/lexos/
https://spacy.io/
https://voyant-tools.org/spyral

8

students, generally need to learn to code. But it may be a reality that text analysis tools
like the Lexos web app can only provide a ‘gateway’ to a limited set of features, and
more sophisticated operations need to take place in other environments. One simple
example must suffice to exemplify this point. SpaCy tokens may be tagged with over 30
different attributes and possess the ability to be annotated by the user with their own
custom attributes. The functions in the lexos Python library can access these
attributes with keywords, but designing an interface to give users access to all of them
from the front end is a tall order. Even if it could be done, users might prefer to configure
the functions themselves in a coding environment. This comes with its own danger.
Lexos must be more than a thin wrapper around spaCy (or scipy or plotly, or any of the
other Python libraries of which the Lexos web app already makes heavy use). It must
provide some value added to give the user some reason to use it, as opposed to
interacting with those libraries directly.

My partial answer to these dilemmas is that Lexos, whether or not it has a user
interface, has to be designed with ready-made solutions to Digital Humanities
problems: that is, problems faced by students and scholars who are primarily
interested in applying computer technologies to humanistic questions and content.
This may take the form of code routines that script particular workflows or discussion
embedded in the documentation that defines terms or describes best practices for
Humanities audiences and data. For this reason, I am trying to supplement
documentation of the lexos API aimed at developers with tutorials that introduce
concepts and workflows for the types of audiences served by the Lexos web app.

There are a few other points to be made about the re-invention of Lexos as a Python
library. I hope that this process will make the future of Lexos less reliant on ever-
changing teams of student developers, or, indeed, a sole developer at a non-research
institution with little. Instead, I hope to make Lexos more like a typical open-source
software project. Once I reach the beta stage, I will invite members of the DH
community to contribute to the code base, and I hope that there will be sufficient
interest to generate enhancements based on the needs of DH users. In advance of this,
I am already soliciting suggestions about what users would like to see in Lexos. I have
already implemented one such suggestion for the Rolling Window tool, which will be
integrated into the next version of the lexos Python library.

The separation of Lexos’ functionality from its interface is also leading me to explore the
use of Lexos to develop tools for other digital projects. For instance, I am collaborating
with the New Variorum Shakespeare Project to create a Lexos visualisation plugin for
their platform. I am interested in exploring other collaborations and am keen to discuss
with the producers of other text analysis tools ways in which data could be passed
easily from one tool to another. I like the idea of text analysis tools being in dialogue,
and I will have more to say about that below.

https://newvariorumshakespeare.org/

9

What Should a DH Text Analysis Tool Look Like in the Future
In this final section, I wish to speculate about what Lexos and other text analysis tools
might ideally look like if we could set aside the types of challenges I have described.

Audience

An out-of-the-box text analysis tool can have multiple audiences from introductory
students to advanced scholars, and it can be a useful timesaver even for those who
might be able to implement its functions programmatically. However, there are
challenges to figuring out who is using the tool, for what purposes, and how the tool can
continue to be relevant as new technologies and methods are adopted by digital
humanists. A tool cannot be all things to all people, but some consideration should be
given to how it can be designed to accommodate multiple levels of expertise. A flexible
audience may create more of a challenge for developers, but it may help to expand the
user base and encourage design that fosters the adoption of new methods and
technologies. However, it is important to retain accessibility as a goal for every level of
complexity.

Ease of Use and Accessibility

I believe that an audience that might be described generally as ‘low-resourced’ is best
served by a tool that is designed with user experience in mind. Based on my experience
with Lexos, I would make the following recommendations:

• Tools aimed at an entry-level audience should have an interface available in a
hosted environment on the web. If the web browser or web hosting provides
limitations, the application should at least be easy to install locally.

• The user interface must be aimed at helping users in the Humanities
operationalise the types of procedures they are likely to want to implement with
their materials such as manipulating non-standardised forms of language or TEI-
encoded texts (more on the latter below).

• The user interface should provide – or at least point to – documentation with
easy-to-understand explanations of the algorithms used, their parameters, and
best practices for deploying them for use with different types of Humanities data.

• The user interface must serve to bridge the epistemological and methodological
knowledge gaps that divide the disciplines, not just enable push-button
implementation of algorithms that can be performed programmatically.

• If the tool requires a coding environment, like the lexos Python library, it is still
important to employ these principles.

10

Community and Support

Another principle that has emerged from the Lexos experience is the importance of
community, both for sustainability and continued relevance. In the early years of the
project, Lexos benefitted from THATCamp and other workshop-style gatherings which
are less common these days. From a developer’s point of view, following best practices
for the design of open-source software is, in my view, essential. I have often wondered
whether the developers of major text analysis tools should have a website, Discord
server, GitHub repo, or another place to come together to talk through how their efforts
overlap, dovetail, or otherwise relate. For instance, does Lexos have to implement a
particular type of word vector visualisation if it already exists in Voyant Tools? Would it
not be more useful to establish a procedure to perform manipulations in Lexos and then
pipe the results into Voyant Tools? Another advantage of having an open forum to
engage in dialogue around off-the-shelf text analysis tools is that developers would be
in a better position to understand their audiences and what features those audiences
most require.

Thinking about the place of tools like Lexos in a community can also help them play an
important function in helping to unify the Digital Humanities as a field. Let me illustrate
this by discussing a feature of Lexos that was broken during the summer of 2020. This
was the ability to perform fine-tuned scrubbing of XML, and thus TEI-XML, tags. If you
are studying the text of a digital edition, the practice of stripping all tags from the text
before performing computational textual analysis – particularly of the bag of words type
– ironically undoes all the hard work of our colleagues in the branch of DH who are
dedicated to enriching digital texts with semantic markup. As more and more textual
content becomes available with descriptive markup, we do a disservice to the field if we
design tools that can not make use of it. In turn, the designers of digital editing and
archiving projects – like the New Variorum Shakespeare Project – should increasingly
have in mind making their content available to text analysis tools. TEI markup is
analogous to the token attributes produced with NLP tools like spaCy, and we should be
able to leverage that extra information they provide when we perform computational
text analysis. I think that the DH tools of the future, particularly those aimed at entry-
level users, should attempt to bring the work of these two communities more closely
together. It may not answer the perennial ‘What is DH?’ question, but it may help people
gain a better understanding of the broad parameters of our field and enable them to find
an accessible entry point into further DH study.

In short, future text analysis tools could

• Form part of a coherent ecosystem in which tools with different functions can
talk to each other.

11

• Be located within a community forum where dialogue takes place about their use
to address common problems in the Digital Humanities.

• Play an important role in bringing together diverse strands of the Digital
Humanities.

Sophistication

Anyone who has ever taught TEI knows that it has a tremendous learning curve,
especially for student learners, who must master the application of a complex schema
to a particular type of material and set of editorial priorities. The same is true for text
analysis, and the complexity of the computational methods used by advanced
researchers has increased tremendously in recent years. We should ask whether off-
the-shelf DH tools for which students are the primary audience should implement
these methods. I would argue yes because not doing so risks obsolescence and
irrelevance. We want to be able to teach students to ask questions and study data in
ways that are enabled by current technologies like language models. However, we do
need to be realistic about the limitations such as the size of data required or the costs
of implementation on high-performance servers. In the coming years, cost and
scalability may present insurmountable barriers to the implication of sophisticated
algorithms in entry-level tools.

I think it is also important for scholars in the Humanities to use the tools to perform real
research. In my view, if a tool merely functions as an ‘intro to DH’, its value – and thus
the value of the methods it demonstrates – becomes too theoretical. It is better for
students to be able to see what their professors are doing in their research and maybe
even to use the tool to participate in that research.

Furthermore, I think that many time-strapped researchers whose primary focus is on
humanistic questions need easily implemented versions of the latest methods, as well
as resources like language models that already solve, or partially solve, problems like
how to deal with orthographic or scribal variation in pre-modern writing systems.
Sometimes that calls for tools like an interface for stripping critical markup from
diplomatic markup without the need to use an XML parsing library or (oh the horror!)
XSLT. I have no better advice than to say that designers of off-the-shelf text analysis
tools may need to look for opportunities to provide access to aspects of data- or
computationally-intensive methods, but recognise that their strengths are more likely to
be in solving higher-level workflow problems. The best medium for bringing wide
audiences to text analysis using tools like LLMs may be a smaller mini-app, rather than
a fuller, multi-featured application.

This brings me to consider, at last, the emerging role that AI might have in Digital
Humanities text analysis. Ziems, et al. have recently argued that the ability of AI to

https://arxiv.org/abs/2305.03514v3

12

‘retrieve, label, and condense relevant information at scale’ is promising, at least in
some domains, and that by ‘labeling human sample flexibly in low-cost classification
capabilities’, it may even lead to the creation of new research paradigms. I consider this
very promising indeed. Already, the Lexos Manage tool allows users to provide class
labels for their documents, but it might be useful to allow an AI to suggest class labels.
This is a relatively inexpensive operation, and the user might make cluster analyses with
different sets of labels to see how the results compare. Ziems, et al. suggest AIs can
help generate annotations to train language models (albeit, with humans still in the
loop). That would potentially lower the cost of enriching the data available for analysis,
enhancing the types of research which I hope the new lexos Python library will enable.
In addition to tools for analysis, we may need to begin to devote attention to developing
entry-level tools for training models for Humanities analyses. We may need to produce
and host our own models, rather than large general-purpose models trained on large
datasets scraped from the web. Again, having some kind of community platform might
help us share resources.

I am less certain how generative API chatbots, trendy as they are, might be deployed in
off-the-shelf text analysis tools. Perhaps a built-in chatbot might be used to explain
features of the interface or help a user decide whether to use Euclidean distance or
cosine similarity on their dataset. A chatbot that uses a model trained specifically on
DH publications might provide genuinely useful results (especially if it is also trained to
provide an appropriate caveat emptor). In the future, generative AI may help us to create
truly paradigm-shifting forms of analysis based on the features that transformer-based
LLMs apparently extract from subword tokens. But since research into what exactly is
happening inside LLMs is just beginning, I think speculation about its significance is
perhaps best left for a follow-up discussion, perhaps at DH2034. Who knows? By then
we may have some non-human participants on the panel.

